
Hammock - Hidden Markov Model based clustering of short

peptide sequences

User’s guide

version 1.1.1

Adam Krejci
Masaryk Memorial Cancer Institute

Brno, Czech Republic

October 2, 2017

©Adam Krejci, 2015-2017

Available under the GNU General Public License,
see http://www.gnu.org/licenses/

News, info and downloads at:
http://www.recamo.cz/en/software/hammock-cluster-peptides/

We are happy to receive bug reports and questions. The preferred way of support is through
the GitHub issues page :

https://github.com/hammock-dev/hammock/issues

For direct email contact, please use:
krejciadam@gmail.com

2

http://www.gnu.org/licenses/
http://www.recamo.cz/en/software/hammock-cluster-peptides/
https://github.com/hammock-dev/hammock/issues

Contents

1 Introduction 5

2 Citing Hammock 5

3 Prerequisites 5

4 How Hammock works 5
4.1 Initial clustering . 5
4.2 Iterative cluster extension and merging . 6

5 Files and formats 7
5.1 Input files . 7

5.1.1 Sequence input . 7
5.1.2 Cluster input . 9

5.2 Output files . 9
5.2.1 Types of files saved . 9
5.2.2 Files saved for runs in particular modes 11

6 Examples 11
6.1 Example 1: MUSI . 11

6.1.1 Start . 12

7 Galaxy implementation 13
7.0.1 Download . 13
7.0.2 Galaxy version input . 14
7.0.3 Galaxy version outputs . 14
7.0.4 Galaxy run parameters . 14

8 Manual pages 15
8.1 Quick start . 15
8.2 Synopsis . 15
8.3 Parameters common for all modes . 15
8.4 Parameters specific for full mode . 16
8.5 Parameters specific for initial clustering modes (greedy and clinkage) 16
8.6 Parameters specific for greedy mode . 17
8.7 Parameters specific for clinkage mode . 18
8.8 Parameters specific for cluster mode . 18

9 Other settings 21
9.1 The settings.prop file . 21

9.1.1 File format . 22
9.1.2 Commands for external tools . 22
9.1.3 Paths to temporal files . 22

3

9.1.4 Parameters for external tools . 22
9.2 jvm parameters . 22

4

1 Introduction

Hammock is a software tool for peptide sequence clustering based upon the usage of profile
Hidden Markov Models. It is especially suitable for large datasets comprising of short sequences,
e.g. data obtained by NGS deep sequencing of Phage Display libraries.

2 Citing Hammock

If you find Hammock useful, please cite this article:

Adam Krejci, Ted R. Hupp, Matej Lexa, Borivoj Vojtesek, and Petr Muller. Hammock: a
hidden markov model-based peptide clustering algorithm to identify protein-interaction consen-
sus motifs in large datasets. Bioinformatics, page btv522, sep 2015. doi: 10.1093/bioinformatics/
btv522. URL http://dx.doi.org/10.1093/bioinformatics/btv522

3 Prerequisites

Java, version at least 1.7.0 is required. Hammock also uses 3 external tools: Clustal Omega[6],
Hmmer 3.0[2] and HHSuite[7]. Compiled versions of these tools are part of Hammock, but
we strongly recommend to recompile them on your system, as compatibility and performance
issues may rise otherwise. If you already have some of these tools installed or placed somewhere
on your system, you may change the default path or command used by Hammock in the settings
file (see 9.1 for details).

To run hhsuite, it is needed to set up en environment variable called HHLIB containing the
path to hhsuite’s lib/hh directory. This must be done before running Hammock. On Unix-like
systems, HHLIB variable may be set for example this way:

export HHLIB=~/Hammock/hhsuite-2.0.16/lib/hh/

See hhsuite manual for more details.

4 How Hammock works

Hammock builds clusters gradually. Starting from single sequences, it first identifies initial
clusters of very similar sequences using greedy or complete linkage clustering. After this step,
several iterations of cluster extension and merging are performed.

4.1 Initial clustering

Initially, Hammock uses a simpler algorithm to generate groups of highly similar sequences -
cluster cores. During this step, sequences are compared using a substitution matrix (controlled
by -m, --matrix parameter, see 8.5), but full alignment is not performed. Instead, sequences
are aligned as solid blocks, so that alignments with inner gaps are not considered. Moreover,

5

http://dx.doi.org/10.1093/bioinformatics/btv522

sequences are only allowed to be shifted relative to each other by some maximal number of
positions (specified by -x, --max shift parameter, see 8.5).

There are two algorithms available for initial clustering. Full complete-linkage algorithm
is more precise and guarantees optimal results for specified parameters. It is though more
computationally demanding and by default, it is only used for datasets of up to 10 000 unique
sequences. Greedy clustering is a much faster, yet less precise algorithm used for larger datasets.
You can force Hammock to use one of these algorithms with --use clinkage and --use greedy

parameters. See section 8.5 for details.

After this step, sequences are grouped into cluster cores - rather small groups of highly
similar sequences.

4.2 Iterative cluster extension and merging

The amount of cluster cores generated by initial clustering step is likely to be quite high.
Therefore, Hammock only selects some of the largest cores as true cluster cores (controlled by
-a, --part threshold, -s, --size threshold or -c, --count threshold parameter, see
8.8). Unselected cores are ”melted” back into single sequences. We will call this group of
sequences the sequence pool.

Having cluster cores selected, Hammock constructs MSA and HMM for each of them. Using
Hmmer’s hmmsearch routine, it then searches the sequence pool for sequences similar to each
core. Sequences similar enough (controlled by -n, --assign thresholds parameter, see 8.8)
are removed from the sequence pool and inserted into appropriate cluster (the one they are
most similar to). We call this step the extension step.

During the extension step, some sequences may have been found to be similar to more
then one cluster (the meaning of ”similar” here is controlled by -v, --overlap thresholds

parameter, see 8.8), which means that the set of sequences similar to one cluster may have
nonempty overlap with the set of sequences similar to another. This indicates that such two
clusters are somewhat similar to each other themselves. If they are similar enough, Ham-
mock will merge them into one cluster. The decision whether clusters are similar enough to
be merged or not is made upon the result from HHSuite’s hhalign routine (controlled by -r,

--merge thresholds parameter, see 8.8). Things may get more complicated when more than 2
clusters have their sets of similar sequences overlapping. Therefore, a special cluster-clustering
scheme is used in this step, which we call the merging step.

Hammock tries to grow clusters from small groups of very similar sequences to bigger
groups with less similarity, sharing just some (potentially short) strong motif. To achieve that,
extension step and merging step are repeated iteratively several times (3 by default) while
similarity thresholds are gradually relaxed. This leads to progressive cluster growth, as the
motif emerges.

Apart from thresholds, there is another system to assure that resulting clusters will not
become too diverse. To represent cluster with HMMs, match states must be defined. A match
state is virtually a column in a cluster’s MSA which does not have too many gaps in it. In
Hammock, a match state is any MSA column between the leftmost and the rightmost conserved

6

position (This is not true if inner gaps are allowed. In that case, an inner MSA column contain-
ing gaps may lie between two match states). You can control which columns will be marked as
conserved positions by -y, --max gap proportion and -k, --min ic parameters and limit
the minimal number of such positions by -h, --min conserved positions parameter. Match
states are then defined accordingly. See section 8.8 for details.

5 Files and formats

5.1 Input files

In full, clinkage and greedy modes, Hammock uses single sequences as input. In cluster

mode, the input consists of entire clusters.

5.1.1 Sequence input

There are 2 supported file formats for sequence input. The .fasta format and the .tsv (.csv)
table format. Both these formats support the concept of sequence labels.

The sequence label concept In Hammock, the most basic piece of data is a unique se-
quence. If one unique sequence occurs in more than one copy in the original dataset, the
information about the number of copies is preserved. To support more structured form of
data, Hammock allows the user to define sequence labels.

A label marks a group of sequences forming some sub-dataset in the original dataset. An
example of such sub-datasets is grouping the sequences from Phage display experiment accord-
ing to the round of selection they were sequenced after. One unique sequence may be preset
in different counts within groups with different labels.

If no label is specified, all sequences are labeled with default label no label.

Labels must not contain pipe (|) and whitespace special characters.

.fasta format Sequences in classic .fasta format where each sequence is saved as a header
line starting with > followed by one line containing the actual peptide sequence. The header
line typically contains unique sequence id, but Hammock does not require the sequence id to
be unique. Actually it does not require the sequence id to be even present - the only limit on
the header line is that it must start with ”>” character.

One unique sequence may occur in .fasta file several times, in that case, occurrences are
counted and the count saved.

Header lines may contain more information - sequence count and labels. In that case,
header lines will contain fields separated by | sign. The second field is considered as sequence
count and the third field as label, if present. Forth and any following fields are ignored. One
fasta header may only contain one label. If more labels for the same sequence are needed,
sequence must be repeated several times - once for each label.

Example of valid .fasta file:

7

>

WVTAPRSLPVLP

>4863

GSWVVDISNVED

>4628|8

NYSGNRPLPGIW

>6642|4|label1

RSPIVRQLPSLP

>6643|3|label2|something

RSPIVRQLPSLP

>664

RSPIVRQLPSLP

>4893|1|label2

AKSRPLPMVGLV

Table 5.1.1 shows sequences and their counts in particular labeled groups resulting from
such .fasta file:

sequence label1 label2 no label

WVTAPRSLPVLP 0 0 1
GSWVVDISNVED 0 0 1
NYSGNRPLPGIW 0 0 8
RSPIVRQLPSLP 4 3 1
AKSRPLPMVGLV 0 1 0

Table 1: Sequence and label counts resulting from example file parsing

.tsv (.csv) format The second option of sequence input is a .tsv table with exactly the same
structure as table 5.1.1.

All fields must be separated by tab characters, the header line must contain all the labels.
Sequences must be in the first column, the name of the first column may be arbitrary. Each
unique sequence must be present on exactly one line, if a sequence is present in 0 copies in
some label group, a cell containing 0 must be present - i.e. all lines must have the same number
of tab-separated fields.

Example

sequence\tlabel1\tlabel2\tno_label

WVTAPRSLPVLP\t0\t0\t1

GSWVVDISNVED\t0\t0\t1

NYSGNRPLPGIW\t0\t0\t8

RSPIVRQLPSLP\t4\t3\t1

AKSRPLPMVGLV\t0\t1\t0

8

\t stays for tab character. This file describes exactly the same dataset as previous table
5.1.1.

5.1.2 Cluster input

In cluster mode, Hammock accepts an input file containing clusters previously generated by
a Hammock run in greedy, clinkage, full or cluster mode. Such file must be in the .tsv
table format identical to output sequences.tsv files. See 5.2.1 for details.

5.2 Output files

Hammock outputs several files into a directory controlled by -d, --outputDirectory param-
eter (see 8.3).

5.2.1 Types of files saved

Hammock represents sets of resulting clusters in three differnet ways: by sequences.tsv files,
sequences original order.tsv and clusters.tsv files. In addition, multiple sequence

alignments, remaining sequences from the sequence pool, input statistics and run logs are
saved.

files with sequences.tsv extension tsv (tab separated) table files. Such file contains full
list of sequences, one line per sequence. For each sequence, cluster membership, alignment
(if available) and label counts are listed. Clusters are sorted by size starting from the
largest, in every cluster, sequences are sorted by sum of occurrences with all labels,
starting from the most frequent. File contains header line.

Example:

cluster_id\tsequence\talignment\tsum\tround1\tround2

2\tEVMSTSDLHRLS\t--EVMSTSDLHRLS-\t51\t11\t40

2\tETDAYTDLHRLA\t---ETDAYTDLHRLA\t28\t9\t19

2\tIGSQSDLHKLTI\t---IGSQSDLHKLTI\t5\t4\t1

2\tEHDMTGYSDLWR\tEHDMTGYSDLWR---\t2\t0\t2

1\tTTMWPPSLNLPL\t-TTMWPPSLNLPL--\t10\t4\t6

1\tTTPPGVHSLAPV\t---TTPPGVHSLAPV\t8\t2\t6

1\tTTSYWWPQNHMD\tTTSYWWPQNHMD---\t3\t3\t0

1\tTTYTPTLHGIMP\t--TTYTPTLHGIMP-\t3\t1\t2

1\tTVRPPLMSAWLV\t--TVRPPLMSAWLV-\t1\t1\t0

\t stays for tab character. File contains two clusters, one of size 86 containing 4 unique
sequences, the other of size 25, containing 5 unique sequences.

files with sequences original order.tsv extension tsv (tab separated) table files. Such
file contains full list of sequences, one line per sequence. It is very similar to files with

9

sequences.tsv, with two differences. First, sequences are not ordered according to
resulting clusters, but according to the original order in the input files used. If .fasta
file was used with more than one occurrence of a sequence, the first occurrence defines
the order. Second, this file also contains sequences not belonging to any cluster (those
left in the sequence pool after the clustering process). Such sequences have NA in their
corresponding cluster id and alignment fields. These files are only saved in greedy,
clinkage and full modes (i.e. in modes where single sequences, not clusters were used
as input).

Example:

cluster_id\tsequence\talignment\tsum\tround1\tround2

2\tEVMSTSDLHRLS\t--EVMSTSDLHRLS-\t51\t11\t40

1\tTVRPPLMSAWLV\t--TVRPPLMSAWLV-\t1\t1\t0

2\tETDAYTDLHRLA\t---ETDAYTDLHRLA\t28\t9\t19

NA\tETDARRDLHRLA\tNA\t5\t6\t2

2\tEHDMTGYSDLWR\tEHDMTGYSDLWR---\t2\t0\t2

1\tTTMWPPSLNLPL\t-TTMWPPSLNLPL--\t10\t4\t6

1\tTTSYWWPQNHMD\tTTSYWWPQNHMD---\t3\t3\t0

NA\tRTSYAAPQNAMD\tNA\t9\t0\t11

2\tIGSQSDLHKLTI\t---IGSQSDLHKLTI\t5\t4\t1

1\tTTYTPTLHGIMP\t--TTYTPTLHGIMP-\t3\t1\t2

1\tTTPPGVHSLAPV\t---TTPPGVHSLAPV\t8\t2\t6

\t stays for tab character. File contains two clusters, one of size 86 containing 4 unique
sequences, the other of size 25, containing 5 unique sequences and two sequences not
belonging to any cluster.

files with clusters.tsv extension tsv (tab separated) table files. Such file contains full list
of clusters, one line per cluster. For each cluster, id, the most frequent sequence and
sums of sequence occurrences for every label are listed. Lines are sorted by cluster size,
starting from the largest cluster. File contains header line. This file may be used in
downstream analysis e.g. to generate a heatmap.

Example:

cluster_id\tmain_sequence\tsum\tround1\tround2

2\tEVMSTSDLHRLS\t86\t24\t62

1\tTTMWPPSLNLPL\t25\t11\t6\t14

\t stays for tab character. File contains information on the same two clusters as in
previous example.

File final remaining sequences.fa This file contains all the sequences not belonging to any
cluster (those left in the sequence pool after the clustering process). It is in the fasta
format described in section 5.1.1. This file is only saved in cluster and full modes.

10

Files with .aln extension These files contain multiple sequence alignments in aligned fasta
format, one file per cluster.

input statistics.tsv This file contains information on input dataset label counts. Saved in
every run.

run.log Contains copy of what’s outputted to stderr. Saved in every run.

5.2.2 Files saved for runs in particular modes

results saved in greedy and clinkage modes In initial clustering modes, resulting clus-
ters are aligned according to greedy clustering or Clustal for clinkage. Three files are
saved, all representing the same result in different ways: initial clusters sequences.tsv,
initial clusters sequences original order.tsv,
initial clusters sequences.csv initial clusters.tsv. See 5.1 for details on file for-
mats). File initial clusters sequences.tsv may be directly used as input for a run in
cluster mode.

results saved in cluster mode cluster mode gets aligned clusters on input. Result-
ing final clusters are saved in files final clusters.tsv, final clusters sequences.tsv and
final remaining sequences.fa.

MSAs for initial and final clusters are saved in aligned fasta format in folders
alignments intial and alignments final folders. MSAs generated throughout the pro-
cess of extending and merging clusters in several rounds (see 4 for details) are saved in
alignments other folder.

results saved in full mode In full mode, all files saved in both greedy or clinkage and
cluster modes are saved. In addition, file final clusters sequences original order.tsv

is saved.

6 Examples

In this section, we will demonstrate the usage of Hammock on sample dataset. Example data
and expected results are stored in examples folder.

6.1 Example 1: MUSI

This dataset was originally published with the MUSI tool [4]. It contains sequences describing
transcription factor binding sites. This dataset is suitable for example, because it is very small,
consists of short sequences (obtained by Phage display) and contains very clear motifs.

11

6.1.1 Start

First, we move to appropriate folder (Suppose Hammock is placed in home folder).

$ cd ~/Hammock/examples/MUSI/

We start by typing in commands from quick start 8.1.

$ export HHLIB=~/Hammock/hhsuite-2.0.16/lib/hh/

$ java -jar ../../dist/Hammock.jar full -i musi.fa

The first command sets an environment variable, that is needed for hhsuite to run, the
second command runs Hammock in full mode, leaving all parameters set to default values.

When the execution finishes, a folder called Hammock result 1 appers in dist folder. Folder
contains several files and subfolders. To see brief overview of the results, we can inspect file
final clusters.csv.

$ cd ../../dist/Hammock_result_1

$ column -s "\t" -t final_clusters.tsv

cluster_id main_sequence sum no_label

4330 AAMFLRPLPAVQ 1670 1670

4334 AALPKLPFRNMT 311 311

4407 GSWAVDISNVED 12 12

We can see that Hammock identified 3 clusters. They are too big for manual inspection of
their MSAs, but we can still have a look

$ column -s "\t" -t final_clusters_sequences.tsv | less

In the first cluster, central ”LP” motif is clearly visible, but we would still like to see some
better visualization. In alignments final folder, there are cluster MSA’s, one file per cluster.
We can use them e.g. to generate sequence logos. Suppose we have installed weblogo 3.4 [1]
before.

$ mkdir logos_final

$ for file in alignments_final/*.aln

> do

> echo $file

> weblogo --format PNG --sequence-type protein --size large --errorbars NO \

> --resolution 299 --composition equiprobable --color-scheme chemistry < $file > \

> "logos_final/$(basename "$file" .aln)".png

> done

12

The three .png files in logos final folder show strong motifs conserved in our clusters.
The smallest cluster seems like a it gathers just a few versions of the same sequence. We believe
these sequences are ”parasites”, i.e. noise present due to the phenomenon of unbalanced phage
amplification.

In alignments other folder, there are alignment files from the entire iterative cluster ex-
tension and merging process.

There are 464 sequences in final remaining sequences.fa that were not assigned to
any cluster (The information on this count is also stored in run.log). We’ll try to change
parameters, so that more sequences are assigned to clusters.

In run.log, we can see that 3 rounds of cluster extension and merging were performed
and that assign threshold values were absolute and set to: 11.4,9.0,6.6. We’ll run Hammock
again with lower threshold values of 11.4, 8.5, 6.0. As greedy clustering results are ok, we’ll
re-use them and run Hammock in cluster mode1. This time, we’ll also use 8 computational
threads. The resulting command look like this:

cd ~/Hammock/

java -jar dist/Hammock.jar cluster \

-i dist/Hammock_result_1/initial_clusters_sequences.tsv \

--assign_thresholds 11.4,8.5,6.0 \

-t 8

We can see that with these parameters, there are only 378 sequences remaining.

7 Galaxy implementation

Note: The Galaxy implementation takes a little longer to update, so when a
new version of Hammock is published, the Galaxy implementation might be
still unsing an older version for a while. The version in use is stated in the
Galaxy repository.

Hammock is also available as a tool for the Galaxy toolbox [3]. The Galaxy version
contains slightly less functionality than full standalone version. This section states the
differences between these two versions and provides details on the Galaxy version.

7.0.1 Download

The Galaxy version of Hammock is available for download and installation from the
main tool shed at https://toolshed.g2.bx.psu.edu/ in repository called hammock in
category Sequence Analysis.

Direct link: https://toolshed.g2.bx.psu.edu/view/hammock/hammock/d90f4809ccc6

1In this case, greedy clustering takes so short that it is not actually necessary, but for large datasets and
intensive parameter testing, this can save significant amount of time.

13

https://toolshed.g2.bx.psu.edu/
https://toolshed.g2.bx.psu.edu/view/hammock/hammock/d90f4809ccc6

7.0.2 Galaxy version input

The Galaxy version only supports fasta input format, see 5.1.1 for details.

7.0.3 Galaxy version outputs

The Galaxy version only outputs two files, both of them are .tsv tables. The sequences.tsv
file contains detailed information on all sequences contained in resulting clusters (see
5.2.1 for details). The clusters.tsv file contains a less detailed summary on resulting
clusters (see 5.2.1 for details).

7.0.4 Galaxy run parameters

The Galaxy version only supports runs in full mode. See 8.3 and 8.4 for detailed de-
scription of parameters. The Galaxy version supports all of the parameters mentioned
in these sections, except -d, --outputDirectory (output is handled by Galaxy), -f,
--file format (only .fasta format is supported) and -t, --threads (threads are han-
dled by Galaxy).

14

8 Manual pages

8.1 Quick start

export HHLIB=~/Hammock/hhsuite-2.0.16/lib/hh/

java -jar ~/Hammock/dist/Hammock.jar full -i ~/Hammock/examples/musi.fa

8.2 Synopsis

Hammock is packed as an executable java .jar archive. It can be invoked as follows:

java -jar jvm args Hammock.jar mode param1 param2 param3...

where mode is one of following:

full

greedy

clinkage

cluster

8.3 Parameters common for all modes

These parameters may be used when any of 4 possible modes is invoked.

-d, --outputDirectory 〈directory〉 All output files will be saved into this direc-
tory. If the directory does not exist, it will be created. If it does exist, Hammock
will stop to prevent overwriting.

Default : directory Hammock result n in dist folder will be created. By default,
n is 1, if Hammock result 1 exists, then n is 2 etc.

-t, --threads 〈int〉 Number of threads to be used for computation.

Default : 4.

-l, --labels 〈str,str,str...〉 Only sequences carrying these labels will be consid-
ered. This parameter also defines the order of labels in all output files. See 5.1.1
for details about labels.

Default : All labels are used. The order in output files is from the most abundant
label to the least abundant.

15

8.4 Parameters specific for full mode

In this mode, Hammock full first invokes initial clustering procedure, than uses its
results as input for hmm clustering procedure. See section 4 for more details.

All the parameters specific for both greedy/clinkage and cluster modes are
allowed with the full mode. Parameter -i, --input behaves the same way as when
used with greedy/clinkage mode, i.e. expects a sequence file the type of which can
be specified by -f, --file format parameter. See 8.5 for details.

--use clinkage If this switch is present, clinkage clustering will be used as the
initial step.

Default : By default, clinkage clustering is used when there are up to 10 000 unique
input sequences.

--use greedy If this switch is present, greedy clustering will be used as the initial
step.

Default : By default, greedy clustering is used when there are more than 10 000
unique input sequences.

8.5 Parameters specific for initial clustering modes (greedy and clinkage)

-i, --input 〈file〉 Required. A path to input file containing input sequences in
one of supported formats. Expected file format is controlled by -f, --file format
parameter.

Default : No default. This parameter is required.

-f, --file format 〈[fasta, tab]〉 Expected format of file specified by -i, --input
parameter. One of two values is expected:

fasta Sequences in fasta format

tab Sequences in .csv table format

See section 5 for information on file formats.

Default : fasta

-m, --matrix 〈file〉 A path to a file containing amino-acid substitution matrix. A
decent selection of matrices is provided in Hammock/matrices/ folder. Any
other matrix respecting the same file format may be provided

Default : Hammock/matrices/blosum62.txt

-g, --alignment threshold 〈int〉 Minimal score needed for a sequence to join
a cluster during initial clustering. For both the clustering routines, each sequence

16

in a cluster must reach at least this score to all the other sequences in the clus-
ter. Only positive integer values are allowed. For compatibility reasons, alias
--greedy threshold can also be used for this parameter.

Default : If not set, threshold value is determined based on average sequence length.
The value is 1.7× average seq legth rounded to integer.

-x, --max shift 〈int〉 The size of maximal sequence-sequence shift. During initial
clustering, Hammock searches for best sequence-sequence alignment without inner
gaps. This parameter specifies the maximal number of positions by which sequences
are allowed to be shifted during alignment. Higher values may mean a bit more
sensitivity for the price of slower computation. Non-negative integer values only.
The maximal value allowed is the length of the shorted sequence -1. If a higher
value is set, Hammock will adjust it to the maximal.

Default : If not set, the value is determined on the basis of average sequence length.
The value is 0.25× average seq legth rounded to integer.

-p, --gap penalty 〈-int〉 During greedy clustering, Hammock searches for best
sequence-sequence alignment without inner gaps. This parameter specifies the neg-
ative penalty given to score of an alignment for each amino acid aligned towards a
(trailing) gap. Non-positive integer values only.

Default : 0

8.6 Parameters specific for greedy mode

-R, --order 〈[size, alphabetic, random, input]〉 This parameter specifies the order
of sequences during greedy clustering. One of three values is expected:

size Sequences are sorted from the one with the most copies to the one with
the least. Sequences with equal numbers of copies are sorted alphabetically.

alphabetic Sequences are sorted alphabetically.

random Random order of sequences is used. In order to achieve determinism and
reproducibility, the random order depends on the -S, --seed parameter

input Order from the input file is preserved.

Default : size

-S, --seed 〈int〉 The seed to be used as the base for pseudorandom sequence order.
Only applicable when -R random is in use. For a defined seed, the order (and so
the result of greedy clustering) is deterministic.

Default : 42

17

--initial clusters limit 〈int〉 Simplifying a bit, we can say that the greedy
clustering algorithm takes sequences one-by-one, starting from the beginning of
the list (defined by -R, --order parameter) and builds a cluster around each
of them. This number specifies how many sequences will get the chance to have a
cluster built around. It is the maximal number of clusters of size more than 1 that
will result from greedy clustering.

Default : 2.5 % of the number of unique sequences in the dataset.

8.7 Parameters specific for clinkage mode

-L, --cache size limit 〈int〉 Size threshold for a cluster have the scores to other
clusters cached. Normally, there should be no need to change this parameter. In
case clinkage mode is used with large datasets, Hammock may require unaccept-
able amounts of memory. Increasing this parameter lowers the demand for memory,
but also increases the execution time. Reasonable values should be approximately
from 1 to 10, the use of higher values practically turns off any caching.

Default : 1

8.8 Parameters specific for cluster mode

-i, --input 〈file〉 Required. A path to an input file containing clusters in .tsv
table format (if produced by Hammock, the files with sequences.tsv extension).

Default : No default. This parameter is required.

-as, --additional sequences 〈file〉 A path to an input file containing sequences
in fasta format. These sequences will be added to the sequence pool. Especially
useful when additional extension (and merging) rounds are needed. If this is the
case, use this parameter to include the final remaining sequences.fa file
from a finished run to continue exactly as if the run was specified to perform more
extension/merging rounds.

Default : No default.

-U, --unique If this switch is present, initial clusters will be ordered by their unique
size, i.e. the number of unique sequences they contain, rather than by their total
size, i.e. the sum of all sequence counts across all labels. The order defines which
clusters will be selected as cluster cores for HMM-based clustering (also influenced
by -c, --count.

Default : By default, this switch is OFF.

-c, --count threshold 〈int〉 This many largest initial clusters will be used as
cluster cores for HMM-based clustering. Clusters are ordered by total size or unique

18

size, depending on -U, --unique parameter. The result will never contain more
than this number of clusters.

Default : 2.5 % of the total number of initial clusters, with the maximum of 250 and
minimum of 25 cores (manual setting overrides maximum and minimum limits).

-n, --assign thresholds 〈float,float,float...〉 Length of this sequence of thresh-
olds defines the number of clustering rounds. Each threshold value is used as the
minimal score (inclusive) returned by hmmsearch needed for a sequence to be
added into a cluster in the respective extension step. If a negative value is found,
the corresponding extension step is skipped (and the following merging step is run
immediately).

Default : By default, 3 rounds of clustering will be performed. Threshold val-
ues are determined based on average input peptide sequence length. If scores
are absolute (switch -b, --absolute thresholds is ON (default)) thresh-
olds are definded as: (0.95, 0.75, 0.55) × average seq legth. If scores are rela-
tive, (switch -e, --relative thresholds is ON), thresholds are defined as:
(0.13, 0.113, 0.108)× average seq legth.

-v, --overlap thresholds 〈float,float,float...〉 For each round of clustering, spec-
ifies minimal score reported by hmmsearch needed for a sequence to be assigned
into overlapping sets of sequences. Clusters having overlapping sets of found se-
quences will be compared using hmm-hmm alignment and may possibly be merged.
Setting lower values may result in increase in sensitivity (more cluster merging) for
the price of greater resource consumption. On the other hand, large values will
prevent clusters from being merged. When the threshold is 0, all clusters will be
compared and possibly merged if similar enough.

The length of this threshold sequence must be the same as the length of sequence
specified by -n, --assign thresholds parameter.

Default : By default, 3 rounds of clustering will be performed. Threshold val-
ues are determined based on average input peptide sequence length. If scores
are absolute (switch -b, --absolute thresholds is ON (default)) thresh-
olds are definded as: (0.7, 0.4, 0.0) × average seq legth. If scores are rela-
tive, (switch -e, --relative thresholds is ON), thresholds are defined as:
(0.09, 0.075, 0.0) × average seq legth. If -n, --assign thresholds parame-
ter is set, so that the number of clustering rounds is not equal 3, whole sequence of
thresholds is determined based on -n, --assign thresholds parameter as:
(assign thresholds)× 0.75 with the last score set to 0.

It is generally recommended to set at least the last score to 0 and at least the first
score to some reasonable positive value.

-r, --merge thresholds 〈float,float,float...〉 For each cluster merging step, spec-
ifies the minimal score reported by hhalign needed for two clusters to be merged.

19

Only clusters having overlapping sets of found sequences are tested and possibly
merged. The length of this score sequence must be the same as the length of se-
quence specified by -n, --assign thresholds parameter. If a negative value
is found, the corresponding cluster merging step is skipped and the following ex-
tension step is run immediately.

Default : By default, 3 rounds of clustering will be performed. Threshold val-
ues are determined based on average input peptide sequence length. If scores
are absolute (switch -b, --absolute thresholds is ON (default)) thresh-
olds are definded as: (0.95, 0.75, 0.55) × average seq legth. If scores are rela-
tive, (switch -e, --relative thresholds is ON), thresholds are defined as:
(0.125, 0.115, 0.110) × average seq legth. If -n, --assign thresholds pa-
rameter is set, so that the number of clustering rounds is not equal 3, whole sequence
of thresholds is determined based on -n, --assign thresholds parameter.
Thresholds are defined as: (assign thresholds)× 1.0.

-e, --relative thresholds If this switch is present, all scores defined
by -n, --assign thresholds, -v, --overlap thresholds and -r,
--merge thresholds are interpreted as per hmm match state scores. It means
that absolute threshold value is computed as (value × length where value is the
value set by parameters and length is the number of match states of shorter hmm
(when hmm vs. hmm are compared) or the length of sequence (when hmm vs.
sequence are compared and sequence is shorter than the number of hmm match
states). This is the opposite from -b, --absolute thresholds switch.

Default : By default, this switch is OFF.

-b, --absolute thresholds If this switch is present, all scores defined
by -n, --assign thresholds, -v, --overlap thresholds and -r,
--merge thresholds are interpreted as absolute threshold values. It means
that these numbers are directly used in computation and no length correction is
made. This is the opposite from -e, --relative thresholds switch.

Default : By default, this switch is ON.

-h, --min conserved positions 〈int〉 At any stage of the algorithm, clusters
are not allowed to have less than this number of conserved positions (i.e. conserved
multiple alignment columns without too many gaps). If this option is set to 0, no
conserved positions control is performed.

Default : If not set, the value is determined on the basis of average sequence length.
The value is 0.33× average seq legth rounded to integer.

-y, --max gap proportion 〈float〉 Defines maximal proportion of gaps in con-
served positions. Any multiple sequence alignment column containing more gaps
will not be considered a conserved position.

20

Default : 0.05

-k, --min ic 〈float〉 Defines minimal information content a conserved position (in
terms of the Shannon entropy). Note that maximal information content (meaning
mulitple alignment column containing the same amino acid in all rows) is 4.3219.

Default : 1.2

-j, --max aln length 〈int〉 Defines maximal alignment length. If a sequence in-
sertion or cluster merging event would result in a cluster having multiple sequence
alignment with more positions than this value, the insertion/merging is not per-
formed.

Default : If not set, threshold value is determined based on average sequence length.
The value is 2.0× average seq legth rounded to integer.

-u, --max inner gaps 〈int〉 Defines maximal number of inner (non-trailing) gaps
for each line of each multiple sequence alignment. If this parameter is more than
0, it might cause a non-match state to exist between 2 match states, representing
insertion/deletion in a part of the cluster sequences.

Default : 0

-q, --extension increase length If this switch is present, sequence insertion
routine is allowed to insert sequences in a cluster, even if such insertion increases
the number of positions in cluster’s multiple sequence alignment.

Default : By default, this switch is OFF.

-C, --min correlation 〈float[-1.0, 1.0]〉 This parameter only makes sense when
multiple sequence labels are in use. Defines the minimal value of Pearson correlation
coefficient between the vectors of sequence-label abundances of two clusters to be
merged or a sequence and a cluster when the sequence is about to join the cluster.
If the threshold is not reached, the merging/joining is not performed. The value of
-1.0 implies no such constraint is applied.

Default : -1.0

9 Other settings

9.1 The settings.prop file

This file contains options less often needed to be changed. It defines commands for calling
external tools, paths to folders containing temporal files and parameters for external
tools.

21

9.1.1 File format

Lines starting with hash (#) character ale ignored.
Each option is defined as a line containing pair key=value where key is option name.

9.1.2 Commands for external tools

By default, commands (paths to) external tools need not to be specified. If a command
is not specified, Hammock expects to find appropriate file in appropriate folder according
to original folder structure Hammock comes with. Paths are internally defined relative
to Hammock.jar file in dist folder. Namely:

Clustal Omega file as: Hammock/clustal-omega-1.2.0/clustalO-64bit
Hmmer’s hmmbuild file as: Hammock/hmmer-3.1b1/src/hmmbuild
Hmmer’s hmmsearch file as: Hammock/hmmer-3.1b1/src/hmmsearch
HHSuite’s hhmake file as: Hammock/hhsuite-2.0.16/bin/hhmake
HHSuite’s hhsearch file as: Hammock/hhsuite-2.0.16/bin/hhsearch

9.1.3 Paths to temporal files

During each run, Hammock generates and deletes several types of temporal files. By
default, all temporal files are placed in subfolders of /tmp/Hammock temp [time]
folder. In settings.prop file, it is possible to change master temporal directory
location from /tmp to some other location, as well as to specify locations of particualr
temporal subdirectories separately (e.g. directory where MSAs are stored). Note that if
temporal subdirectories already exist at the beginning of Hammock run, their contents
are deleted.

Hammock may generate up to thousands of (generally very small) temporal files in
each run, depending on input size and complexity.

9.1.4 Parameters for external tools

It is generally not recommended to change anything in this section. Some changes may
result in Hammock not working at all, others may have strong impact on results. See
manuals of external tools for definitions of parameters used.

9.2 jvm parameters

For big datasets, it may be necessary to allow jvm to allocate more memory. This can
be done using -Xmx parameter, e.g. -Xmx4g to allocate up to 4 gigabytes.

22

References

[1] G. E. Crooks. WebLogo: A sequence logo generator. Genome Research, 14(6):1188–
1190, may 2004. doi: 10.1101/gr.849004. URL http://dx.doi.org/10.1101/
gr.849004.

[2] R. D. Finn, J. Clements, and S. R. Eddy. HMMER web server: interactive sequence
similarity searching. Nucleic Acids Research, 39(suppl):W29–W37, may 2011. doi:
10.1093/nar/gkr367. URL http://dx.doi.org/10.1093/nar/gkr367.

[3] B. Giardine. Galaxy: A platform for interactive large-scale genome analysis. Genome
Research, 15(10):1451–1455, sep 2005. doi: 10.1101/gr.4086505. URL http://dx.
doi.org/10.1101/gr.4086505.

[4] T. Kim, M. S. Tyndel, H. Huang, S. S. Sidhu, G. D. Bader, D. Gfeller, and P. M. Kim.
MUSI: an integrated system for identifying multiple specificity from very large peptide
or nucleic acid data sets. Nucleic Acids Research, 40(6):e47–e47, dec 2011. doi:
10.1093/nar/gkr1294. URL http://dx.doi.org/10.1093/nar/gkr1294.

[5] Adam Krejci, Ted R. Hupp, Matej Lexa, Borivoj Vojtesek, and Petr Muller.
Hammock: a hidden markov model-based peptide clustering algorithm to identify
protein-interaction consensus motifs in large datasets. Bioinformatics, page btv522,
sep 2015. doi: 10.1093/bioinformatics/btv522. URL http://dx.doi.org/10.
1093/bioinformatics/btv522.

[6] F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez,
H. McWilliam, M. Remmert, J. Soding, J. D. Thompson, and D. G. Higgins.
Fast, scalable generation of high-quality protein multiple sequence alignments us-
ing clustal omega. Molecular Systems Biology, 7(1):539–539, jan 2011. doi:
10.1038/msb.2011.75. URL http://dx.doi.org/10.1038/msb.2011.75.

[7] J. Soding. Protein homology detection by HMM-HMM comparison. Bioinformatics,
21(7):951–960, nov 2004. doi: 10.1093/bioinformatics/bti125. URL http://dx.
doi.org/10.1093/bioinformatics/bti125.

23

http://dx.doi.org/10.1101/gr.849004
http://dx.doi.org/10.1101/gr.849004
http://dx.doi.org/10.1093/nar/gkr367
http://dx.doi.org/10.1101/gr.4086505
http://dx.doi.org/10.1101/gr.4086505
http://dx.doi.org/10.1093/nar/gkr1294
http://dx.doi.org/10.1093/bioinformatics/btv522
http://dx.doi.org/10.1093/bioinformatics/btv522
http://dx.doi.org/10.1038/msb.2011.75
http://dx.doi.org/10.1093/bioinformatics/bti125
http://dx.doi.org/10.1093/bioinformatics/bti125

	Introduction
	Citing Hammock
	Prerequisites
	How Hammock works
	Initial clustering
	Iterative cluster extension and merging

	Files and formats
	Input files
	Sequence input
	Cluster input

	Output files
	Types of files saved
	Files saved for runs in particular modes

	Examples
	Example 1: MUSI
	Start

	Galaxy implementation
	Download
	Galaxy version input
	Galaxy version outputs
	Galaxy run parameters

	Manual pages
	Quick start
	Synopsis
	Parameters common for all modes
	Parameters specific for full mode
	Parameters specific for initial clustering modes (greedy and clinkage)
	Parameters specific for greedy mode
	Parameters specific for clinkage mode
	Parameters specific for cluster mode

	Other settings
	The settings.prop file
	File format
	Commands for external tools
	Paths to temporal files
	Parameters for external tools

	jvm parameters

